Building High-Performance Smartphones via Non-Volatile Memory: The Swap Approach

Kan Zhong¹, Tianzheng Wang², Xiao Zhu¹, Linbo Long¹, Duo Liu¹, Weichen Liu¹, Zili Shao³ and Edwin H.-M. Sha¹

¹College of Computer Science, Chongqing University
²Department of Computer Science, University of Toronto
³Department of Computing, The Hong Kong Polytechnic University

{liuduo, kzhong1991}@cqu.edu.cn

http://nvm-swap.bitbucket.org/

Oct 15, 2014 New Delhi, India

Outline

- Background
 - Performance and Energy
 - Swapping
- NVM-Swap: NVM based swapping
 - Copy-on-Write Swap-in (COWS)
 - WL Algorithm: Heap-Wear
- Evaluation
- Conclusion

Background — Performance

Large DRAM is required for high performance smartphones

Background — Energy

- More DRAM, more energy consumption
 - DRAM consumes up to 34.5% of overall energy
- Rise more pressure on battery lifetime

- [1] Rice, A etc., Decomposing power measurements for mobile devices, IEEE PerCom 2011.
- [2] A. Carroll etc., An analysis of power consumption in a smartphone, USENIX ATC 2010.
- [3] Avneesh Agrawal, "Trends in Wireless Communications", available at http://www.ieee infocom.org/2010/docs/Infocom2010_keynote.pdf.

Background — Swapping

- Write inactive pages to swap device
 - Extend main memory space

Reduce around 66% ~ 91% of process terminations.

- Swapping is not practical in smartphones
 - Poor performance of smartphone internal flash
 - Limited program/erase cycles of flash memory

Why not use flash base swapping

Swapping is disabled in smartphones

	SLC NAND flash	MLC NAND flash	DRAM
Endurance	100,000 P/E cycles	30,000 P/E cycles	>10 ¹⁶
Read page	25us	75us	~ns
Program page	200us	1600us	~ns
Erase block	700us	5ms	-

- Process will be terminated directly if no memory space left
 - Bad user experience

[1] Micron, "1Gb x8, x16: NADN Flash Memory Features" MT29F1G08ABBDAH4 data sheet, 2010 [2] Micron, "128Gb 256GB, 512Gb Async/Sync Enterprise NAND Features" MT29E128G08CECAB data sheet, 2010

Outline

- Background
 - Performance and Energy
 - Swapping
- NVM-Swap: NVM based swapping
 - Copy-on-Write Swap-in (COWS)
 - WL Algorithm: Heap-Wear
- Evaluation
- Conclusion

Emerging NVM technology

- Emerging Non-Volatile Memory (NVM)
 - Byte-addressable, high density, low standby power etc.
 - Near DRAM performance

	PRAM	RRAM	STT-RAM	DRAM
Endurance	10 ⁸	10 ⁸	>10 ¹⁵	>10 ¹⁶
Read time (ns)	20–50	10–50	2–20	30
Write / Erase time (ns)	50 / 120	10–50	2–20	15
Cell size (F ²)	6–12	6–10	6–20	6-10
High voltage required	1.5-3V	1.5-3V	<1.5V	3V
Refresh operation	No	No	No	Yes

Alexander Driskill-Smith, Latest Advances and Future Prospects of STT-RAM, NVMW 2010

NVM-Swap: NVM based swapping

- Revisiting swapping in smartphones with emerging NVM
 - NVM is attached to the memory bus and used as swap area
 - High-performance

Swap out:

Swap out:

Swap out:

Swap in:

Swap out:

Swap in:

Swap out:

Swap in:

NVM-Swap endurance problem

Unbalance writes in NVM swap area

- Endurance issue of NVM
 - E.g. PCM cell only has $10^8 \sim 10^9$ programming cycles
 - Most NVMs are vulnerable to unbalance writes

Heap-Wear: NVM-Swap Wear leveling

■ Data structure

- Age counter for each swap slot
- Doubly linked list
- Min-heap

Heap-Wear: NVM-Swap Wear leveling

- Age comparison
 - Compare the age of head slot with the top slot

Heap-Wear: NVM-Swap Wear leveling

Outline

- Background
 - Performance and Energy
 - Swapping
- NVM-Swap: NVM based swapping
 - Copy-on-Write Swap-in (COWS)
 - WL Algorithm: Heap-Wear
- Evaluation
- Conclusion

Evaluation — Experimental setup

Evaluation — Metrics

Metrics	Description
Number of memory copy operations	Measure the effectiveness of COWSRun various of applications
Wear-leveling	Evaluate the effectiveness of Heap-WearWrite 128GB data to swap space in total
Application launch time	Important performance metric for smartphone usersUse customized applications

Evaluation — Applications

Category	Applications
Browser	
Social network	
Multimedia	You Tube
Office	Office
Gaming	Google Play Games
Shopping	amazon ebay Taobao.com
News	NEWS Flipboard TED engadget NETEASE WWW.163.com

- Memory copy reduction
 - COWS can help reduce around 40% ~ 75% of swap-ins

Comparison of Number of memory copy operations

Wear-leveling

Threshold = 16

Threshold = 64

■ Wear-leveling

Threshold = 128

Threshold = 256

Wear-leveling overhead

Distribute the writes evenly across the swap space with

negligible overhead

■ Read time

- Application launch time
 - NVM-Swap is more than 20% faster on average compared to Flash backed swap

App1-5 simulate application launch by loading a file of size 10MB to 30MB (5MB increment)

Conclusion

- We revisited swapping in smartphones and proposed NVM-Swap to build high-performance smartphones
- COWS: Remove unnecessary memory copy operations
 - More than 50% memory copy operations reduction
- Heap-Wear: WL algorithm for NVM swap space
 - Distribute writes evenly across whole swap space with negligible overhead
- Improve user experience
 - Compared to flash-based swap, application launch time is reduced more than 20% with the help of NVM-Swap

Thank you! Question?

http://nvm-swap.bitbucket.org/